Abstract

The dynamics of photoisomerization of 3,3'-diethyloxadicarbocyanine iodide (DODCI) has been investigated inside micellar environment formed by a surfactant-like ionic liquid, 1-butyl-3-methylimidazolium octyl sulfate ([C(4)mim][C(8)SO(4)]) and also in binary mixture of another ionic liquid, N,N,N-trimethyl-N-propyl ammonium bis(trifluoromethanesulfonyl) imide, ([N(3111)][Tf(2)N]) with methanol, acetonitrile, and n-propanol by using steady-state and picosecond time-resolved fluorescence spectroscopy. The entrapment of DODCI into the [C(4)mim][C(8)SO(4)] micellar environment led to the enhanced fluorescence intensity along with ~13 nm red shift in the emission maxima. A sharp increase in the fluorescence quantum yield (Φ) and the lifetime (τ(f)) near the critical micelle concentration (cmc) range is observed followed by saturation at higher concentration. As a result of partitioning of the probe molecules in the micellar phase from water, the nonradiative rate constant (k(nr)) of DODCI decreases 2.7 times than in water. The retardation of isomerization rate is due to high microviscosity of the micellar system compared to bulk water. In order to understand how the rate of isomerization depends on polarity as well as viscosity, we have measured isomerization rate in neat [N(3111)][Tf(2)N] and its mixtures with polar solvents, like methanol, acetonitrile, and n-propanol. The addition of methanol and n-propanol increases the polarity, but viscosity of the medium decreases. The nonradiative rate constant that represents the rate of photoisomerization decreases with the addition of the polar solvent in [N(3111)][Tf(2)N]. Complete analysis of all the experimental results indicate that viscosity is the sole parameter that regulates the rate of photoisomerization. Temperature-dependent k(nr) are used to determine the activation energy (E(a)) in 100 mM [C(4)mim][C(8)SO(4)] solution and neat [N(3111)][Tf(2)N] system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.