Abstract

The photophysics and photochemistry of (1-biphenyl-4-yl-1-methyl-ethyl)-tert-butyl diazene were thoroughly studied by laser flash photolysis from the picosecond to the microsecond time domain. The compound has favorable features as a radical photoinitiator and as a probe for cage effect studies in liquids, supercritical fluids, and compressed gases. The biphenyl moiety acts as an antenna efficiently transferring electronic energy to the dissociative (1)n,pi* state centered on the azo moiety. By picosecond experiments irradiating at the biphenyl- and at the azo-centered transitions, we were able to demonstrate this fact as well as determine a lifetime of 0.7 ps for the buildup of 1-biphenyl-4-yl-1-methyl-ethyl radicals (BME*). The sum of in-cage reaction rate constants of BME* radicals by combination and disproportionation is 5 x 10(10) s(-1). The free radical quantum yield in solution is 0.21 (phi(BME*)) in n-hexane at room temperature, whereas the dissociation quantum yield approaches 50%. The symmetric ketone, 2,4-bis-biphenyl-4-yl-2,4-dimethyl-pentan-2-one, was used as a reference compound for the production and reaction of BME* radicals. Transient IR measurements show CO stretching bands of the excited (3)pi,pi* and (1)n,pi* states but no dissociation up to 0.5 ns. A fluorescence lifetime of 1 ns for this ketone is consistent with this observation. By transient actinometry and kinetic decays in the microsecond time range, we measured epsilon(BME*) = (2.3 +/- 0.2) x 10(4) M(-1) cm(-1) at 325 nm and a second-order rate constant of 5.8 x 10(9) M(-1) s(-1) for the consumption of BME* radicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.