Abstract

Graphitic carbon nitride (g-CN) is one potential metal-free photocatalyst. The photocatalytic mechanism of g-CN is related to the heptazine ring building unit. Melem is the simplest heptazine-based compound and g-CN is its polymeric product. Thus, studies on the photophysical properties of melem will help to understand the photocatalytic mechanism of heptazine-based materials. Herein, the spectroscopic features of melem were systematically explored through measuring its absorption spectrum, fluorescence spectrum, and fluorescence decay. Both fluorescence spectroscopy and fluorescence decay measurements show that the condensation of melamine to melem causes stronger photoluminescence, whereas the condensation of melem to g-CN causes weaker photoluminescence. In addition, all observations reveal that a mixture of monomer melem and its higher condensates is more easily obtained during the preparation of melem, and that the higher condensates of melem affect the photophysical properties of melem dominantly. The photocatalytic hydrogen evolution of melem has also been measured and the monomer melem has negligible photoinduced water-splitting activity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.