Abstract

Hypoxia results when the oxygen supply to rapidly growing tumors becomes inadequate to support various physiological processes. This plays a role in tumor metastasis and treatment resistance. Therefore, identifying tumor hypoxia can guide treatment planning and predict patient responses. However, hypoxic volumes are heterogeneously dispersed throughout a tumor, making it a challenge to pinpoint them with any degree of accuracy. Herein, we report the development of ratiometric hypoxia probe 1 (rHyP-1), which is a hypoxia-responsive small-molecule probe designed for reliable hypoxia detection using photoacoustic imaging. Photoacoustic imaging utilizes near-infrared (NIR) light to induce the production of ultrasound signals, enabling high-resolution image acquisition at centimeter depths. Together with the ratiometric capability of rHyP-1, reliable hypoxia detection with unprecedented spatial resolution is possible while minimizing error associated with concentration dependence and tissue heterogeneity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.