Abstract

It is attractive but highly challenging to achieve controllable regulation of photophysical properties of pure organic luminogens, due to distinct work mechanisms and molecular structures. Here, a strategy to regulate in a controllable way the emission behavior of luminogens is reported, according to which long-lived aggregation-induced emission (AIE) can be switched to short-lived dual-state emission (DSE) by an isomer-based substitution reaction. Three luminogens with sharply different photophysical behaviors, including aggregation-induced phosphorescence and dual-state fluorescence emission, were obtained through a substitution reaction with three isomers. Freely rotating structures are attributed to aggregation-induced phosphorescence behavior, whereas twisted rigidification of the molecule greatly contributes to its dual-state emission phenomenon. This work contributes to the controlled regulation of photophysical behaviors through simple reactions and provides a solid evidence to support the key role of the prohibition of intramolecular rotation in aggregation-induced emission process and molecular design of dual-state emitters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.