Abstract

Gd2InSbO7 and Gd2FeSbO7 were synthesized first, and their structural and photocatalytic properties were studied. The lattice parameters and the band gaps for Gd2InSbO7 and Gd2FeSbO7 were 10.449546 Å, 10.276026 Å, 2.897 eV and 2.151 eV. The photocatalytic degradation of rhodamine B was performed with Gd2InSbO7 and Gd2FeSbO7 under visible light irradiation. Gd2InSbO7 and Gd2FeSbO7 had higher catalytic activity compared with Bi2InTaO7. Gd2FeSbO7 exhibited higher catalytic activity than Gd2InSbO7. The photocatalytic degradation of rhodamine B followed with the first-order reaction kinetics, and the first-order rate constant k was 0.01606, 0.02220 or 0.00329 min−1 with Gd2InSbO7, Gd2FeSbO7 or Bi2InTaO7 as photocatalyst. Complete removal of rhodamine B was observed after visible light irradiation for 225 min or 260 min with Gd2FeSbO7 or Gd2InSbO7 as photocatalyst. The evolution of CO2 was realized, and it indicated continuous mineralization of rhodamine B during the photocatalytic process. The possible photocatalytic degradation pathway of rhodamine B was proposed.

Highlights

  • Nowadays, with the development of industry, wastewater is yielded in bulk

  • In our previous work [44], we have found that Bi2InTaO7 crystallized with the pyrochlore-type structure and acted as a photocatalyst under visible light irradiation and seemed to have a potential for improvement of the photocatalytic activity upon modification of its structure

  • Photocatalytic degradation of aqueous rhodamine B (RhB) was observed under visible light irradiation in the presence of Gd2FeSbO7 and Gd2InSbO7 accompanied with the formation of final products, such as CO2 and water

Read more

Summary

Introduction

With the development of industry, wastewater is yielded in bulk. some industries, such as textile and dyeing manufacturing, produce a large amount of dyestuff wastewater [1]. Some investigations [2,32,33,34,35,36,37,38] about the photodegradation of RhB have been reported under ultraviolet light or visible light irradiation, showing that photocatalysis was an effective degradation method for degrading dye to a large extent. The resemblance suggested that Gd2InSbO7 and Gd2FeSbO7 might possess photocatalytic properties under visible light irradiation, which was similar with the other members in the A2B2O7 family. Both Gd2InSbO7 and Gd2FeSbO7 were semiconductor compounds that were synthesized for the first time In this contribution, we discussed the structural and photocatalytic properties of. Gd2InSbO7 and Gd2FeSbO7 by degrading RhB under visible light irradiation and compared the photocatalytic activity among Gd2InSbO7, Gd2FeSbO7 and Bi2InTaO7 in order to elucidate the structure-photocatalytic activity relationship in these newly synthesized compounds

Characterization
Photocatalytic Activity
Experimental Section
Conclusions

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.