Abstract
The phosphorescence properties of fac-Ir(pmp)3, mer-Ir(pmp)3, fac-Ir(dmpmp)3 and mer-Ir(dmpmp)3 (where pmp = 3-methyl-1-phenyl-2,3-dihydro-1H-imidazo[4,5-b]pyridine and dmpmp = 1-(2',6'-dimethylbiphenyl-2-yl)-3-methyl-2,3-dihydro-1H-imidazo[4,5-b]pyridine) in CH2Cl2 were investigated. At 77 K, the fac-isomers showed blue emission with a vibronic structure, while the mer-isomers showed less structured emissions. At 300 K, all complexes showed broad and markedly red-shifted emission spectra compared to those at 77 K. The quantum yields of the Ir(dmpmp)3 isomers were very low, and their emission lifetimes were very short compared to those of Ir(pmp)3. In order to understand the large differences between the photodynamic properties of Ir(pmp)3 and Ir(dmpmp)3, we performed femtosecond time-resolved transient absorption (TA) spectroscopic measurements. The TA spectra of Ir(dmpmp)3 were almost the same as those of Ir(pmp)3 at a short delay time. However, Ir(dmpmp)3 showed a new broad TA band at around 720 nm with increasing delay time. The rise time of this band was ca. 10 ps for both isomers, and this may be attributed to the geometrical change in the excited state, which is associated with the steric hindrance of the bulky dimethylphenyl substituent. Actually, Ir(dmpmp)3 showed a strong rigidochromic shift in the emission spectra with varying temperature. To understand the molecular orbitals and the energy levels, theoretical calculations were performed using density functional theory. As a result, structural displacement takes place accompanied by the fast migration of localization of excited states via intraligand charge transfer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.