Abstract

One-dimensional (1D) graphene nanoribbons (GNRs) are promising materials for future electronics and optoelectronics. Their versatility in electronic properties makes it possible to use them as an active element in devices with a tunable band gap. Different from graphene, armchair-edge GNRs (AGNRs) are semiconducting with a direct bandgap [1-3]. However, until now their photophysical characterization has not been addressed properly due to the metal substrate on which they are grown. The substrate hinders measurements such as transmission and photoluminescence (PL). Here we transfer AGNRs with a width of N = 7 atoms from Au(788) to insulating substrates using an alignment-preserving method and investigate their photoluminescence properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.