Abstract

Here, nitrogen-doped carbon quantum dots (N-CQDs) were successfully synthesized by the solvothermal method using graphite as the carbon source and N,N-dimethylformamide as the nitrogen source. We characterized the structure and chemical constitution of N-CQDs using X-ray diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. We investigated the pump- and temperature-dependent photoluminescence (PL) properties and the dynamic exciton recombination processes of N-CQDs, using both steady-state and time-resolved PL techniques. The spectral results show that the PL emission peak located at 518 nm at room temperature, mainly originates from the n-π∗ transition on the surface of N-CQDs. The pump fluence and PL integral intensity were analyzed to demonstrate the existence of single-photon excitation under the 405 nm laser excitation. As the temperature increases, the non-radiative transition gradually increases, which decreases the PL intensity, the full width at half maxima first narrows and then widens and the PL lifetime gradually decreases. Furthermore, we combined the N-CQDs with chip to prepare light-emitting diode (LED). The resulting chromaticity coordinate was obtained to be (0.29, 0.40). This study offers a comprehensive understanding of the luminescence mechanism in N-doped CQDs and introduces a novel approach for the quickly fabrication of full-color display LEDs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call