Abstract

1,8-Naphthalic anhydride (NAN) has long been known as an intermediate for the synthesis of 1,8-naphthalimide derivatives with diverse applications. Uses of NAN for other purposes are restricted because it hydrolyzes in water and other protic solvents. In the current work we have investigated the absorption, steady-state and time-resolved fluorescence spectroscopy of NAN in eight different aprotic solvents of varying polarity. The compound is found to have different quantum yields in all the solvents. Astoundingly, NAN shows minimal fluorescence yield in dimethyl sulphoxide and N,N-dimethylformamide which is found to originate from pure collisional quenching owing to proton affinity of the solvent. In aprotic solvents acetonitrile and ethyl acetate, fluorescence emission and lifetime of NAN are quenched on addition of aliphatic amines namely triethylamine (TEA), tri-N-butylamine (TBA) and diisopropylethylamine (DIEA). Laser flash photolysis experiments in acetonitrile solvent have been used to find out the transient intermediates, which depict the involvement of photo-induced electron transfer from the amines to NAN. Hence, NAN has the potential to act as an efficient photo-induced electron acceptor in aprotic medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.