Abstract

The effects of solvent polarity on the fluorescence spectra and fluorescence decays of β-(1-pyrenyl)ethyl p-cyanobenzoate (P2CN) were investigated in detail using binary solvents consisting of various mixing ratios of isooctane-ethyl acetate or ethyl acetate-acetonitrile (dielectric constants (ε)=1.94–36.2). Whereas both the intensity and wavelength maxima of an intramolecular exciplex emission (EX) are dependent on the solvent polarity, only the intensity of an emission from the locally excited pyrene (LE) is dependent on the solvents used. When monitored at 377nm, the picosecond SPC (single photon counting) measurements reveal a slow decay (>150ns) in addition to a fast decay (<1ns) of the locally excited P2CN. There are also two decays for the EX which vary the intensity ratios by the monitored wavelength. The decay rate constants, kEX1 and kEX2, have a good linear correlation with the dielectric constants of the solvents, indicating that there exist two kinds of exciplexes. It is suggested that the decays of the locally excited-state of P2CN are so fast due to result of the efficient electron transfer that the two kinds of intramolecular exciplexes are formed from the two discrete conformers in the ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.