Abstract

Synthetic bacteriochlorins enable systematic tailoring of substituents about the bacteriochlorin chromophore and thereby provide insights concerning the native bacteriochlorophylls of bacterial photosynthesis. Nine free-base bacteriochlorins (eight prepared previously and one prepared here) have been examined that bear diverse substituents at the 13- or 3,13-positions. The substituents include chalcone (3-phenylprop-2-en-1-onyl) derivatives with groups attached to the phenyl moiety, a "reverse chalcone" (3-phenyl-3-oxo-1-enyl), and extended chalcones (5-phenylpenta-2,4-dien-1-onyl, retinylidenonyl). The spectral and photophysical properties (τs, Φf, Φ(ic), Φ(isc), τT, k(f), k(ic), k(isc)) of the bacteriochlorins have been characterized. The bacteriochlorins absorb strongly in the 780-800 nm region and have fluorescence quantum yields (Φf) in the range 0.05-0.11 in toluene and dimethylsulfoxide. Light-induced electron promotions between orbitals with predominantly substituent or macrocycle character or both may give rise to some net macrocycle ↔ substituent charge-transfer character in the lowest and higher singlet excited states as indicated by density functional theory (DFT) and time-dependent DFT calculations. Such calculations indicated significant participation of molecular orbitals beyond those (HOMO - 1 to LUMO + 1) in the Gouterman four-orbital model. Taken together, the studies provide insight into the fundamental properties of bacteriochlorins and illustrate designs for tuning the spectral and photophysical features of these near-infrared-absorbing tetrapyrrole chromophores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.