Abstract

In this report, a diamine ligand having an electron-pulling group in its conjugation plane was designed. A methyl group was connected with this diamine ligand, hoping to further increase its steric hindrance. Its Cu(I) complex was synthesized and characterized by NMR, single crystal analysis and photophysical analysis. There was a distorted tetrahedral coordination field in this Cu(I) complex. Its onset electronic transition owned a mixed character of metal-to-ligand-charge-transfer which suffered from bad geometric relaxation. To limit this geometric relaxation and improve emissive performance, this Cu(I) complex was doped into a polymer host through electrospinning technique. Photophysical comparison between solid state sample, solution sample and composite samples indicated that excited state geometric relaxation was effectively limited by polymer immobilization effect, resulting in improved emissive performance, such as emission blue shift, long emission decay lifetime and better photostability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call