Abstract

Photophysical parameters relevant to photodynamic therapy have been studied for a novel lipophilic opp-dibenzoporphyrin (DBP), 2,12-diethyl-3,13-dimethyldibenzo[g,q]porphyrin, in N,N-dimethylformamide and TX-100 micelles. The structure of DBP is intermediate between a porphyrin and a phthalocyanine and is associated with higher molar extinction coefficients in the red Q-bands than those found in the haematoporphyrin derivative currently used for photodynamic therapy. The ultrafast measurements on DBP in DMF revealed a fast (ps) lifetime for the second excited singlet state. Observed lifetimes of the first excited singlet state were found to be similar in DMF and TX-100 (12.2 and 14.7 ns), but excited triplet lifetimes were different in the two solvents (0.46 and 2.86 micros). The fluorescent quantum yields of DBP in DMF and TX-100 were twice that of free-base tetraphenylporphyrin and the singlet oxygen quantum yield in DMF and TX-100 was high (0.56-0.65). The combination of stable chemical structure, stronger red-absorption, high singlet oxygen quantum yields, and high fluorescent quantum yields suggests that DBP is an potential chromophore for applications in photodynamic therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call