Abstract

Megoura produces parthenogenetic virginoparae in long day conditions, gamic oviparae in short days. The nature of this photoperiodic response has been analysed by rearing parent apterae in a wide range of circadian and non-circadian light cycles. By varying the light and dark components independently in a two-component cycle it has been established that the time measuring function is associated primarily with the dark period. There is no evidence that an endogenous circadian oscillation is implicated: thus (a) the ‘short day’ response is abolished by ‘night interruptions’ positioned in the early or late night. But this bimodal response pattern remains unchanged when the duration of the ‘main’ photoperiod is varied from ca. 6 hr to at least 25·5 hr. The stability of the maxima within the scotophase is inconsistent with the ‘coincidence’ models of photoperiodic timing that have been proposed. It is suggested that the essential timing process operates on the hour-glass principle, beginning anew with the onset of each period of darkness; (b) night interruption experiments employing very long (up to 72 hr) scanned dark periods yielded response maxima explicable in terms of the hour-glass hypothesis but did not reveal any circadian relationship between the maxima.The ‘dark reaction’ comprises a sequence of four stages, definable by the effects of light. Stage 1, extending from dark hr 0 to ca. 2·5, is fully photoreversible: at the next dark period the entire timing sequence is repeated up to the 9·5 hr critical night length. Towards the end of stage 1 reversibility is gradually lost and after a light interruption the reaction is resumed from a later time equivalent than dark hr 0; the subsequent critical night length is therefore reduced. The extent of the photoreversal is related to light duration. The period of maximum light insensitivity (stage 2) is attained at the end of the fourth hour. From ca. dark hr 5 to just short of the critical night length light exerts an increasingly promotive action which favours the production of virginoparae. This dark process is not photoreversible. Stage 4, which begins at hr 9·5, marks the end of the timing sequence. Light will not then annul the non-promotive action of the previous long night.Light has three effects which are determined by its duration and position within the cycle. The two terminal effects, mentioned above, are associated with the interception of dark stages 1 and 3 by either short (1 hr) or longer photoperiods. Light also prepares or primes the dark period timer. Thus the critical length is increased, and timing accuracy lost, if the preceding photoperiod is less than ca. 6 hr. Light during stage 4 has a priming action but no terminal function. Repeated cycles are ‘read’ in various ways, depending on the cycle structure. For example, if light intercepts stage 3, a two-component cycle is interpreted as the overlapping sequence light/dark/light. One and the same photoperiod then acts terminally in respect of the preceding dark period and as a primer for the next dark period.There is also a mechanism for summing the promotive effects produced by repeated interruption of dark stage 3. With complex (four-component) cycles both halves of the same cycle may contribute. ‘Product accumulation’ falls below threshold if the frequency of presentation of a given promotive cycle is too low. This occurs if there are very long, relatively non-promotive dark components. Such cycles are accepted as ‘continuous darkness’.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call