Abstract
Photoperiod is an important environmental signal for regulating developmental patterns in many plant species. In several species, photoperiodic regulation of gibberellin A1 biosynthesis has been implicated as the mechanism by which photoperiod may alter development. To examine this phenomenon in strawberry, Fragaria virginiana plants grown under long day (LD) and short day (SD) conditions with equivalent total PAR were examined to determine changes in vegetative growth and GA1 biosynthesis.LD conditions (16 hr) promoted vegetative growth. Runner production, total leaf area, area of individual leaves, and petiole lengths, all increased under LD conditions. No runner production occurred under SD conditions (8 hr); however, the number of branch crowns increased.Gibberellins A44, A19, A20, and A1, all from the GA1 biosynthetic pathway, were identified in plants under both LD and SD conditions. However, SD conditions appeared to affect the 2β-hydroxylation of GA20 to GA1. Whereas levels of most GAs decreased under SD conditions, levels of GA20 increased, and only trace amounts of GA1 were found, indicating a possible blockage of the pathway at this point. As GA1 is considered the active component of the pathway, blockage of GA20 conversion under SD conditions may explain the concomitant reduction in vegetative growth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.