Abstract

Photoperiod and melatonin are important regulators of immunity. We hypothesized that these two factors play an important role in the regulation of immune responses in the Natrix piscator. Animals were kept in either short or long days and splenocyte immune responses were studied. Respiratory burst activity of splenocytes was assessed through reduction of nitrobluetetrazolium salt while production of nitric oxide was assessed indirectly by nitrite assay. Density gradient centrifugation was used to isolate splenic lymphocytes which were utilized to study proliferation with and without mitogens. Super oxide production by splenocytes was reduced significantly in the cultures obtained from animals kept either in short or long days. Nitrite release was decreased when animals were subjected to long days. The photoperiodic alterations acted differentially on proliferations of the splenic lymphocytes. Spontaneous and mitogen-induced proliferation of splenic lymphocytes were enhanced in cultures obtained from snakes maintained in short days when compared with cultures from snakes obtained either from long day or natural day length conditions. In vitro melatonin significantly enhanced the splenic lymphocyte proliferation of the cultures obtained from animals kept in long days when compared with splenic lymphocyte proliferations of the cultures obtained from long day animals or the animals kept in natural day length conditions. We found evidence which suggest that photoperiod may influence seasonal energy budgets and induce adjustments which optimize energy allocation for costly physiological processes such as immune function. In seasonally breeding animals such as Natrix piscator, the pineal hormone melatonin assists in the suppression of reproduction and elevation of immunity, which are the crucial adaptation for perpetuation of species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call