Abstract

Nanoradiosensitizers have been developed to enhance localization and precision of therapeutic radiation delivery. A specific volume of comprising surface atoms is known to be the radiosensitizing region. However, the shape-dependent local dose enhancement of nanoparticles is often underestimated and rarely reported. Here, a noble metal nanostructure, inspired by the photoperiodic day-flowers, was synthesized by metal reduction with bile acid molecules. The impact of high surface area of day-flowermimicking metallicnanoparticles (D-NP) on radiosensitizing effect was demonstrated with assays for ROS generation, cellular apoptosis, and clonogenic survival of human liver cancer cells (HepG2) cells. In comparison with lower-surface-area spherical night-flower mimickingmetallicnanoparticles (N-NP), exposure of our D-NP to external beam radiation doses led to a significant increase in reactive oxygen species (ROS) production and radiosensitizing cell cycle synchronization, resulting in an enhanced cancer-cell-killing effect. In clonogenic survival studies, dose-enhancing factor (DEF) of D-NP was 16.5-fold higher than N-NP. Finally, we demonstrated in vivo feasibility of our D-NP as a potent nanoradiosensitizer and CT contrast agent for advanced image-guided radiation therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call