Abstract

[(3)H]GA(20) applied to spinach plants (Spinacia oleracea L.) was metabolized to several products. Two of these were identified by combined gasliquid chromatography-radio counting as [(3)H]GA(29) and [(3)H]3-epi-GA(1). Inasmuch as both GA(20) and GA(29) are endogenous gibberellins in spinach (Metzger, Zeevaart 1980 Plant Physiol 65: 623-626), it was concluded that the conversion of GA(20) to GA(29) is a natural process. However, 3-epi-GA(1) was not detected in extracts of spinach shoots analyzed by combined gas chromatography-mass spectrometry. This indicates that the conversion of exogenous [(3)H]GA(20) to [(3)H]3-epi-GA(1) may be an artifact.Long-day pretreatment of spinach shoots caused a 2-fold increase in the rate of [(3)H]GA(20) metabolism over the rate of metabolism in plants maintained under short-day conditions. Furthermore, [(3)H]GA(29) accumulated more rapidly under long than under short days, whereas photoperiodic treatment had no effect on the accumulation of [(3)H]3-epi-GA(1). Thus, the long-day-induced increase in the level of endogenous GA(29) in spinach shoots (Metzger, Zeevaart 1980 Plant Physiol 66: 844-846) appears to be the result of an increased capability to convert GA(20) to GA(29).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.