Abstract

Megachile rotundata F. populations are managed to pollinate alfalfa, Medicago sativa L. (Fabaceae), for seed production in western North America. Some progeny produced in summer by overwintered M. rotundata females enter diapause as prepupae to overwinter and become adults the following year. Other offspring avert diapause to undergo adult emergence in summer. The regulatory mechanism(s) of diapause induction or aversion is unknown; the process apparently involves multiple and integrated factors. This 4-yr study sought to determine effects of the exposure of mother bees to short, long, very long, and natural photoperiods on their production of non-diapausing and diapausing progeny. Just-emerged adult bees from both Utah and Canada sources were exposed to different photoperiods for 3 d in incubators and then released into field enclosures placed over blooming alfalfa. Control bees were those exposed to only outdoor conditions. Reproduction was monitored for each female bee, and offspring diapause outcome was recorded. Progeny outcome data were informative for only two of the four study years. Generally, progeny of Utah mothers exposed to long and very long photoperiods were more likely to be non-diapausers compared to progeny of mothers exposed to short and control photoperiods. Short and long (but not very long) photoperiod maternal exposures increased the likelihood of diapause aversion in Canada progeny. Performing multiyear field studies on geographically distinct populations is imperative for revealing environmental challenges and inconsistent bee performance that can impair analyses and interpretation. Future similar studies are needed to more fully evaluate photoperiod effects on diapause.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call