Abstract

The present study was undertaken to examine the long-term effect of continuous light and constant temperature and their interaction on growth, feed intake, gill Na+, K+-ATPase (NKA) activity and early sexual maturation in Atlantic salmon pre- and post-smolts. The fish (mean initial weight = 15.9 g ± 0.4 SE) were reared on two photoperiods (continuous light, LL and simulated natural photoperiod, LDN, 60°25′N) and on two constant temperatures (average 8.3 and 12.7 °C) from June to July the following year. This resulted in four experimental groups abbreviated as LL8, LL12, LDN8 and LDN12. Growth in freshwater was highest in the LL12 group and final weight of this group was 70–330 % higher than in the other experimental groups, and our findings further demonstrate that the growth-enhancing effect of continuous light alone corresponds to a 4.5° increase in temperature. Overall, the highest feed intake was registered in the LL12 group, whereas no differences in feed intake or growth were observed between the LL8 and LDN12 groups, and the lowest feed intake and growth in the LDN8 group. Both temperature groups on LL developed peak levels in gill NKA activity in October–November, 4–5 months prior to the natural season for the parr–smolt transformation. Fish at 12 °C showed peak levels in NKA activity 4–6 weeks before the fish on 8 °C. The proportion of mature males was higher at 12.7 °C (66 %) compared to 8.3 °C (11 %). Highest maturation was seen at LL12 (82 %). For the salmon industry, this means that long-term rearing at LL and 12.7 °C will improve growth but also leads to higher maturation proportion. By rearing fish at LL8, it is, however, possible to achieve high growth and low maturation simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.