Abstract
The winter flounder is an in‐shore flatfish living in shallow waters on the east coast of North America from Labrador to Georgia. In the St Lawrence estuary, the reproductive season is May and June. Our objective was to test the effects of winter‐spring photoperiod and temperature conditions on the timing of sexual maturation in both males and females. Groups (16 animals each) of winter flounder breeders were maintained from mid‐January to mid‐May under five different experimental conditions: (1) natural photoperiod and temperature conditions; (2) natural photoperiod, 6° C; (3) 15L : 9D, natural temperature conditions; (4) 15L : 9D, 6° C; (5) accelerated photoperiod increase from winter to spring conditions, 6° C. Natural photoperiod and temperature conditions correspond to a gradual increase in light period from 8L : 16D (January) to 15L : 9D (May) and in temperature from −1° C (January to April) to 6° C (May). GSI and condition factor did not differ among the treatments (P > 0·05). In males, milt production occurred simultaneously in the different treatments and histological examination did not indicate any significant effect of either photoperiod or temperature on testes development. In females, seven stages of oocyte development were observed. Both the number of oocytes at the cortical alveoli stage and number of atretic oocytes increased at 6° C (warm temperature conditions). Overall, neither photoperiod nor temperature modified the reproductive period. Warm winter‐spring temperature conditions, however, may decrease egg numbers and egg quality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.