Abstract

Thin films of poly(vinyl chloride), PVC, and carboxylated poly(vinyl chloride), C-PVC, containing 1.8% of carboxyl groups were exposed to high energy ultraviolet radiation (λ = 254 nm) in laboratory conditions. The photochemical reactions in irradiated samples were studied by FTIR and UV–Vis spectroscopy, gel permeation chromatography and gravimetric estimation of insoluble gel. It was found that photodegradation and photocrosslinking in C-PVC is accelerated, whereas photodehydrochlorination is retarded comparing to these processes in PVC. Photooxidation investigated on the base of reaction leading to formation of hydroxyl groups is also more efficient in modified PVC. However, the total amount of carbonyl groups is much lower in UV-irradiated C-PVC than that in PVC. It indicates that competitive reactions (destruction of carboxyl groups and formation of new carbonyls) occur simultaneously in C-PVC chains. The influence of carbonyl groups on photochemical processes can be explained by an efficient Norrish I and II reactions as well as by energy transfer from absorbing species to weak chemical bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call