Abstract

Dilute mixtures of n-octanal in synthetic air (up to 100 ppm) were photolyzed with fluorescent UV lamps (275-380 nm) at 298 K. The main photooxidation products were 1-hexene, CO, vinyl alcohol, and acetaldehyde. The photolysis rates and the absolute quantum yields were found to be slightly dependent on the total pressure. At 100 Torr, Φ(100) = 0.41 ± 0.06, whereas at 700 Torr the total quantum yield was Φ(700) = 0.32 ± 0.02. Two decomposition channels were identified: the radical channel C(7)H(15)CHO → C(7)H(15) + HCO and the molecular channel C(7)H(15)CHO → C(6)H(12) + CH(2)═CHOH, having absolute quantum yields of 0.022 and 0.108 at 700 Torr. The product CH(2)═CHOH tautomerizes to acetaldehyde. Carbon balance data lower than unities suggest the existence of unidentified decomposition channel(s) which substantially contributes to the photolysis. On the basis of experimental and theoretical evidence, n-octanal photolysis predominantly proceeds to form Norrish type II products as the major ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.