Abstract

The photooxidation of soybean oil was determined and correlated with triacylglycerol composition and structure. Purified triacylglycerols were photooxidized at room temperature under fluorescent light. Rates of peroxide formation and total headspace volatiles were related positively (P<0.5 significance) to oxidizability (r=0.75, r=0.76); content of linolenic acid (r=0.80, r=0.85) and linoleic acid (r=0.61, r=0.57); linoleic acid on carbon 2 (r=0.64, r=0.64); and average number of double bonds (r=0.76, r=0.76). Negative correlations were observed with respect to oleic acid (r=−0.70, r=−0.70). Soybean oil stability was decreased by linolenic acid‐containing triacylglycerols and increased by oleic acid‐containing triacylglycerols. Trilinoleoylglycerol and dilinoleoyl‐oleoylglycerol were the most important oxidation product precursors. However, for high‐linolenic acid soybean oil, dilinoleoyl‐linolenoylglycerol and trilinoleoylglycerol were the most important oxidation product precursors. The most abundant volatile produced from thermal decomposition at 140°C of photooxidized triacylglycerols was 2‐heptenal, except for high‐linolenic acid oils, where the most abundant volatile was propanal. The photooxidative stability of soybean oil triacylglycerols with respect to composition and structure is of interest for the development of soybean varieties with oils of improved odor and flavor stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.