Abstract
We investigated photoredox transformations of oxygen, carbon, peroxides, and iron that accompany “photodissolution” of suspended marine particulate organic carbon (POC), a sunlight-induced process that transfers POC to the dissolved organic carbon (DOC) pool. During 18- to 24-hour photodissolution experiments with POC of varying composition, about 0.28 mol of O 2 was consumed per mole POC photodissolved. Mean dissolved inorganic carbon (DIC) production was 6% of initial POC in suspended river delta sediments and 1% in algal membrane detritus. The mean O 2 loss:DIC production ratio was − 1.3:1 in sediment suspensions, which slightly exceeds the typical range reported for DOC. The O 2 loss:DIC production ratio was − 7.7:1 in suspensions of algal detritus, which implies significant oxygen incorporation into (oxygenation of) organic matter. Irradiated sediment suspensions rapidly achieved low, steady-state peroxide concentrations but rose more slowly with algal detritus. Elevated iron concentrations in the 0.7–8.0 μm particle size fraction after 24 h of irradiation are consistent with photoredox cycling of metals and/or with physical disintegration of organic-mineral aggregates driven by organic matter dissolution. These oxidation and oxygenation results differ from analogous reactions previously found for marine DOC, and estimates of DIC production in particle-rich environments will require incorporation of POC-specific information.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.