Abstract

High-valent iron-oxo species are thought to be intermediates in the catalytic cycles of oxygenases and peroxidases. An attractive route to these iron-oxo intermediates involves laser flash-quench oxidation of ferric hemes, as demonstrated by our work on the ferryl (compound II) and ferryl porphyrin radical cation (compound I) intermediates of horseradish peroxidase. Extension of this work to include cytochrome P450-BM3 (CYP102A1) has required covalent attachment of a Ru(II) photosensitizer to a nonnative cysteine near the heme (RuIIK97C-FeIIIP450), in order to promote electron transfer from the Fe(III) porphyrin to photogenerated Ru(III). The conjugate was structurally characterized by X-ray crystallography (2.4 Å resolution; Ru-Fe distance, 24 Å). Flash-quench oxidation of the ferric-aquo heme produces an Fe(IV)-hydroxide species (compound II) within 2 ms. Difference spectra for three singly oxidized P450-BM3 intermediates were obtained from kinetics modeling of the transient absorption data in combination with generalized singular value decomposition analysis and multiexponential fitting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.