Abstract

The fate and effects of an oil spill are effected by solar radiation through the action of photo-oxidation and photo-toxicity. Photo-oxidation, an important process in the weathering of oil, produces a variety of oxidized compounds, including aliphatic and aromatic ketones, aldehydes, carboxylic acids, fatty acids, esters, epoxides, sulfoxides, sulfones, phenols, anhydrides, quinones and aliphatic and aromatic alcohols. Some of these compounds contribute to the marine biota toxicity observed after an oil spill. Photo-toxicity occurs when uptake of certain petroleum compounds, e.g. certain polycyclic aromatic hydrocarbons and benzothiophenes, is followed by solar exposure which results in much greater toxicity than after dark uptake. The mechanism of PAH photo-toxicity includes absorbance of solar radiation by the PAH which produces a free radical and this free radical in turn reacts with oxygen to produce reactive oxygen species that can damage DNA and other cellular macromolecules. While most studies on photo-toxicity have been carried out in the laboratory, there are studies showing that water from an oil spill is photo-toxic to bivalve embryos for at least a few days after the spill. Other studies have found that oil contaminated sediments are photo-toxic to several marine invertebrates. More studies are required to determine if marine fauna at an oil spill site are effected by the action of photo-toxicity and photo-oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call