Abstract

Enzyme mimics have broad applications in catalysis and can assist elucidation of the catalytic mechanism of natural enzymes. However, challenges arise from the design of catalytic sites, the selection of host molecules, and their integration into active three-dimensional structures. Herein, we describe the development of a photooxidase mimic by synergetic molecular self-assembly. 9-Fluorenylmethyloxycarbonyl-l-histidine undergoes efficient co-assembly with phthalocyanine into nanovesicles with tunable particle size and membrane thickness. The obtained nanovesicles can be used as catalysts for reactive-oxygen-mediated photosensitive oxidation with improved efficiency and stability. This work highlights the co-assembly of simple building blocks into a supramolecular photocatalyst, which might give insight into possible evolutionary paths of photocatalytic membrane systems, and might allow facile transfer into photosensitive nanoreactors or artificial organelles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.