Abstract

Topology influences the properties and applications of polymers. Consequently, considerable efforts have been made to control topological structures. In this work, we have developed a photoorganocatalyzed divergent synthetic approach based on reversible-deactivation radical polymerization (RDRP) that enables the preparation of both linear and branched fluoropolymers of low dispersity (Ð), a tunable degree of branching and high chain-end fidelity by exposure to LED light irradiation under metal-free conditions. This method promotes the generation of complicated structures (e.g., necklace-like and mop-like fluoropolymers) via chain-extension photo-RDRP, and provides a novel and versatile platform to access fluoropolymer electrolytes with high Li-ion transference number and good ionic conductivity, which should create improved opportunities for advanced material engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call