Abstract

The realization of a narrowband photonic quantum source based on an atomic device is considered essential in the practical development of photonic quantum information science and technology. In this study, we present the first step toward the development of a photon-pair source based on a microfabricated Cs atomic vapor cell. Time-correlated photon pairs from the millimeter-scale Cs vapor cell are emitted via the spontaneous four-wave mixing process of the cascade-type 6S1/2-6P3/2-8S1/2 transition of 133Cs. The maximum normalized cross-correlation value between the signal and idler photons is measured as 622(8) under a weak pump power of 10 µ;W. Our photon source violates the Cauchy-Schwartz inequality by a factor of >105. We believe that our approach has very important applications in the context of realizing practical scalable quantum networks based on atom-photon interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.