Abstract

A wideband microwave photonic phase shifter implemented based on a special dual-parallel Mach–Zehnder modulator (DP-MZM) consisting of two sub-MZMs and a polarization rotator is proposed and demonstrated. A microwave signal to be phase shifted is applied to the two sub-MZMs, via a 90° hybrid coupler, to generate two orthogonally polarized intensity-modulated optical signals, which are combined at a polarization beam combiner. A phase-shifted microwave signal is obtained by detecting the combined signal at a photodetector. The tuning of the phase shift is realized by tuning the DC bias voltages applied to the sub-MZMs. Since the phase shift tuning has been done electrically, high speed phase tuning can be implemented. The proposed phase shifter is experimentally demonstrated. A continuous phase tuning from 0° to 360° with small magnitude variations of less than ±1 dB and phase ripple standard deviation of less than 2.7° in a decade bandwidth from 2.5 to 25 GHz is realized. The system insertion loss is measured to be 10.8 dB. Investigation on the cause of magnitude and phase deviations is also performed by simulations, which are confirmed by experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.