Abstract

A novel photonic-assisted multifunctional radar system was proposed and experimentally investigated. This system can simultaneously achieve frequency-doubled linear frequency modulation (LFM) signal generation, de-chirp reception, self-interference cancellation, and frequency measurement in an integrated transmit-receive radar. First, a high-frequency and broadband LO signal was obtained with photonic frequency doubling, which improved the center frequency and bandwidth of the radar detection system. Then, photonic-assisted interference cancellation was used to reduce the impact of interference signals in radar de-chirp reception. Finally, the microwave frequency measurement was achieved by establishing a mapping relationship between the envelope response time of the intermediate frequency (IF) electrical filter and the microwave frequency to be tested. Both theoretical and experimental investigations were performed. The results showed that an LFM signal with a frequency range of 12-18 GHz was obtained with photonic frequency doubling. Photonic-assisted self-interference cancellation reduced the impact of interference signals in radar de-chirp reception by more than 12.1 dB for an LFM signal bandwidth of 6 GHz. In the frequency measurement module, the difference between the frequency to be tested, generated by the external signal source, and that calculated in the experiment is the measurement error, and a measurement resolution better than 14 MHz was achieved in the range of 12.14 GHz-18.14 GHz. The proposed system is suitable for miniaturized multifunctional radar signal processing systems with continuous operation of transmitting and receiving antennas in unmanned aerial vehicles (UAVs), automotive radar, relatively close spatial locations, and so on. In addition, it can simplify the system structure and reduce space occupation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.