Abstract

A photonics-based short-time Fourier transform (STFT) system is proposed and experimentally demonstrated based on stimulated Brillouin scattering (SBS) without using high-frequency electronic devices and equipment. The wavelength of a distributed feedback laser diode is periodically swept by using a low-speed periodic sawtooth/triangular driving current. The periodic frequency-sweep optical signal is modulated by the signal under test (SUT) and then injected into a section of SBS medium. The optical signal from another laser diode as the pump wave is reversely injected into the SBS medium. After simply detecting the forward transmission optical signals in a low-speed photodetector, the STFT of the SUT is implemented. The system is characterized by the absence of any high-frequency electronic devices or equipment. An experiment is performed. The STFT of a variety of RF signals is carried out in a 4-GHz bandwidth. The dynamic frequency resolution is demonstrated to be around 60 MHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.