Abstract

In this paper, a dual-band photonics-based radar system used for precise displacement measures in a multitarget scenario is described. The radar was designed for monitoring applications to prevent both structural failures of buildings and landslides. The radar system exploits the technique of stepped frequency continuous wave signal modulation and the displacement of the targets is evaluated through differential phase measurements. In this work, encouraged by the results already achieved in the single-target scenario, we present an investigation extended to the case of multiple targets. We aim to evaluate the accuracy of the displacement estimation both from a simulated and experimental point of view, and to understand how multiple targets impact on the final estimate of displacements. Simulation results demonstrate that it is possible to achieve a typical accuracy of less than 0.2 mm for distances up to 400 m. These results are confirmed by preliminary experimental outcomes, which take into account different operative conditions with multiple targets. Finally, concluding remarks and perspectives draw the agenda for our future investigations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.