Abstract

We report on the design and experimental demonstration of array-enhanced nanoantennas for polarization-controlled multispectral nanofocusing in the near-IR spectral range. We design plasmonic double bow-tie nanoantennas-coupled to multiple-periodic nanoparticle arrays to harvest radiation of designed wavelengths from a large spatial area and to focus it into a targeted nanoscale region. Near-field calculations were performed on a gold nanoantenna array using three-dimensional finite difference time domain simulations. Cross-shaped optical nanoantennas were fabricated on glass substrates using electron beam lithography. The optical characterization of the fabricated nanoantennas was performed using second harmonic excitation spectroscopy that demonstrates multiwavelength photonic coupling in good agreement with the antenna modeling. The nanoantenna structures introduced in this Letter provide the ability to focus optical energy into deep subwavelength areas and to address multiple spectral regions with polarization control. Such attributes are highly desirable in optical biosensing, enhanced Raman scattering, and for nonlinear plasmonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.