Abstract

Due to their low phase noise at high carrier frequencies, photonic microwave oscillators are continuously expanding their application areas including digital signal processing, telecommunications, radio astronomy, and RADAR and LIDAR systems. Currently, the lowest noise photonic oscillators rely on traditional optical frequency combs with multiple stabilization loops that incorporate large vacuum components and complex optoelectronic configurations. Hence, the resulting systems are not only challenging to operate but also expensive to maintain. Here, we introduce a significantly simpler solution: a Photonically Referenced Extremely STable Oscillator (PRESTO). PRESTO requires only three key components: a femtosecond laser, a fiber delay element, and a pulse timing detector. The generated microwave at 10 GHz has phase noise levels of -125, -145, and <-160 dBc/Hz at 1, 10, and >100 kHz, respectively, with an integrated timing jitter of only 2 fs root mean square (RMS) over [100 Hz-1 MHz]. This approach offers a reliable solution for simplifying and downsizing photonic oscillators while delivering high performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.