Abstract
Photonic stepped-frequency radars based on optical frequency-shifting modulation have shown attractive properties such as wide bandwidth, centimeter range resolution, inherent frequency-time linearity with low spectrum spurs, and reduced system complexity. However, existing approaches typically exhibit meter- or centimeter-level radar range ambiguity, inversely proportional to the frequency step, due to the large frequency shift determined by acousto-optic or electro-optic (EO) modulators. Here, we overcome this limitation by injecting a narrowband, stepped-frequency signal into an optical frequency-shifting fiber cavity to achieve, for the first time, to our knowledge, a broadband photonic stepped-frequency radar with 150-m unambiguous detection and centimeter range resolution, surpassing the reported photonic- and electronic-based counterparts. The demonstrated approach effectively resolves the trade-off between ambiguity range and shifting frequency while maintaining the signal quality and bandwidth, bringing its practicality into reach for outdoor applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.