Abstract

Photonic stepped-frequency radars based on optical frequency-shifting modulation have shown attractive properties such as wide bandwidth, centimeter range resolution, inherent frequency-time linearity with low spectrum spurs, and reduced system complexity. However, existing approaches typically exhibit meter- or centimeter-level radar range ambiguity, inversely proportional to the frequency step, due to the large frequency shift determined by acousto-optic or electro-optic (EO) modulators. Here, we overcome this limitation by injecting a narrowband, stepped-frequency signal into an optical frequency-shifting fiber cavity to achieve, for the first time, to our knowledge, a broadband photonic stepped-frequency radar with 150-m unambiguous detection and centimeter range resolution, surpassing the reported photonic- and electronic-based counterparts. The demonstrated approach effectively resolves the trade-off between ambiguity range and shifting frequency while maintaining the signal quality and bandwidth, bringing its practicality into reach for outdoor applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.