Abstract

Here, we investigate the photonic spin Hall effect in twisted bilayer graphene. The optical conductivities for several rotation angles of twisted bilayer graphene are calculated by first principles, based on which a theoretical framework is established to describe the light-matter interaction. To enhance the photonic spin Hall effect, twisted bilayer graphene is placed on a BK7 glass substrate and a Gaussian beam is launched near the Brewster angle. The spin splitting as well as Goos-Hänchen shifts are investigated, which are associated, respectively, with the imaginary and real parts of the surface conductivities of the twisted bilayer graphene. These findings provide a deeper understanding of the photonic spin Hall effect in two-dimensional materials and have potential application in characterizing bilayer graphene.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call