Abstract

A photonic quantum-well is constructed by sandwiching a uniform medium between two photonic barriers due to the photonic band gap mismatch, similar to electronic quantum well. The transmission coefficient is calculated by a plane-wave expansion method in combination with multiple-scattering techniques. The transmission peaks indicate that some photonic states exist in a quantized way, satisfying a quantized frequency relation. We also show that the finite photonic potential barrier plays different confined roles on the different photonic levels. The positions and number of the resonant peaks can be artificially tuned by varying the well width. By appropriately choosing the parameters of the well and barrier, a high-quality multichannel filtering can be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call