Abstract

The quantum Hall effect involves electrons confined to a two-dimensional plane subject to a perpendicular magnetic field, but it also has a photonic analogue1–6. Using heterostructures based on structured semiconductors on a magnetic substrate, we introduce compact and integrated coherent light sources of large orbital angular momenta7 based on the photonic quantum Hall effect1–6. The photonic quantum Hall effect enables the direct and integrated generation of coherent orbital angular momenta beams of large quantum numbers from light travelling in leaky circular orbits at the interface between two topologically dissimilar photonic structures. Our work gives direct access to the infinite number of orbital angular momenta basis elements and will thus enable multiplexed quantum light sources for communication and imaging applications. A topological photonic crystal design directly generates light that carries orbital angular momentum with high quantum numbers. The beam contains several different states at the same time, promising integrated and multiplexed light sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.