Abstract
Recent years have witnessed a rising demand for edge computing, and there is a need for methods to decrease the computational cost while maintaining a high learning performance when processing information at arbitrary edges. Reservoir computing using physical dynamics has attracted significant attention. However, currently, the timescale of the input signals that can be processed by physical reservoirs is limited by the transient characteristics inherent to the selected physical system. This study used an Sn-doped In2 O3 /Nb-doped SrTiO3 junction to fabricate a memristor that could respond to both electrical and optical stimuli. The results show that the timescale of the transient current response of the device could be controlled over several orders of magnitude simply by applying a small voltage. The computational performance of the device as a physical reservoir is evaluated in an image classification task, demonstrating that the learning accuracy could be optimized by tuning the device to exhibit appropriate transient characteristics according to the timescale of the input signals. These results are expected to provide deeper insights into the photoconductive properties of strontium titanate, as well as support the physical implementation of computingsystems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Advanced science (Weinheim, Baden-Wurttemberg, Germany)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.