Abstract

Microwave frequency measurement (MFM) is to estimate frequencies of intercepted microwave signals, which is critical to modern military and civil radio-frequency (RF) systems, such as wireless communications, electronic countermeasure (ECM), radar warning and electronic intelligence systems. In this paper, a photonic-assisted MFM method based on harmonic down-conversion with semiconductor optical amplifiers (SOAs) is proposed. Two optical harmonic intensifiers consisting of an electro-optic intensity modulator and a SOA are used to generate high-order optical harmonics based on cascaded four-wave mixing in the SOA, which has low-frequency and tunable spacing. It enables ultra-wide harmonic down-conversion of microwave signals under test in the electrical domain with low-frequency local oscillator (LO). The microwave frequency is therefore unequivocally determined by cross-referencing two pairs of harmonic down-converted tones within the LO frequency. It enables multi-tone frequency measurement and eliminates the trade-off between the measurement range and frequency-resolution. Moreover, it avoids the limitation of deadband by the cross-referenced frequency discrimination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.