Abstract

A novel concept to generate a linear chirped microwave signal is proposed and experimentally demonstrated. The frequency to time mapping method is employed, where the photonic crystal waveguide Mach-Zehnder interferometer structure acts as the spectral shaper thanks to the slow light effect. By optimizing the structural parameters of the photonic crystal waveguide, a linear chirped microwave signal with the time-bandwidth product of about 30 is experimentally obtained. The impact of the slow light photonic crystal waveguide on the generated linear chirped microwave signal is also investigated. The utilization of the slow light effect brings in significant advantages, including the ultra-small footprint of 0.096 mm2 and simple structure to our scheme, which may be of great importance towards its potential applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.