Abstract
Atmospheric turbulence severely degrades the optical wavefront of a propagating beam, which greatly reduces the coupling efficiency of free-space optical (FSO) receivers. Among the various methods to mitigate the effects, the use of a multi-channel receiver is more convenient and economical. After passing through the multi-channel receiver, multiple single-mode fibers (SMFs) are output and need to be combined. In this paper, we propose photonic integrated coherent beam combiners based on multimode interference (MMI) and the stochastic parallel gradient descent (SPGD) algorithm, which avoids detecting the light out of each channel and adding the data signal in the electrical domain. First, we propose a 4-channel coherent beam combiner based on a 4×1 MM, and about 21 iterations of the SPGD algorithm are required to enhance the combined optical power to a maximum of 96%. Furthermore, we demonstrate a combination of 16 beams using five 4×1 MMIs, which requires 140 iterations to enhance the combined power to 89%. This study offers theoretical insights to enhance the integration of FSO communication systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.