Abstract

The passive sections of a monolithic device must have a wider bandgap than the active regions to reduce losses due to direct interband absorption. Such bandgap engineering is usually realized by complicated regrown butt-joint or selective-area growth techniques. We, however, have developed a simple, flexible and low-cost alternative technique – quantum well intermixing (QWI) – to increase the bandgap in selected areas of an integrated device post-growth. To verify the QWI process, we have fabricated the following demonstrators: a 40 GHz semiconductor mode-locked laser producing pulses as short as 490 fs; a 10 GHz passively mode-locked extended cavity laser integrated with surface-etched distributed Bragg reflector (DBR) which can be tuned in both wavelength and pulse repetition rate; four 10 GHz 1.55 μm AlGaInAs/InP mode-locked surfaced-etched DBR lasers integrated combiner, a semiconductor optical amplifier and modulator where the four channels can be operated separately or simultaneously; a CWDM source with 12 nm wavelength separation based on an AlGaInAs/InP integrated distributed feedback laser array; and a 1.55μm DFB laser monolithically integrated with power amplifier array. In all these applications, QWI has the advantage of eliminating crystal regrowth and the associated stringent tolerance requirements that are required in traditional integration schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call