Abstract

We present integrated-optic building blocks and functional photonic devices based on amorphous silicon-on-insulator technology. Efficient deep-etched fiber-to-chip grating couplers, low-loss single-mode photonic wire waveguides, and compact power splitters are presented. Based on the sub-μm photonic wires, 2×2 Mach–Zehnder interferometers and add/drop microring resonators (MRRs) with low device footprints and high finesse up to 200 were realized and studied. Compact polarization rotators and splitters with ≥10 dB polarization extinction ratio were fabricated for the polarization management on-chip. The tuning and trimming capabilities of the material platform are demonstrated with efficient microheaters and a permanent device trimming method, which enabled the realization of energy-efficient photonic circuits. Wavelength multiplexers in the form of cascaded filter banks and 4×4 routers based on MRR switches are presented. Fabrication imperfections were analyzed and permanently corrected by an accurate laser-trimming method, thus enabling eight-channel multiplexers with record low metrics of sub-mW static power consumption and ≤1°C temperature overhead. The high quality of the functional devices, the high tuning efficiency, and the excellent trimming capabilities demonstrate the potential to realize low-cost, densely integrated, and ultralow-power 3D-stacked photonic circuits on top of CMOS microelectronics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.