Abstract

We propose a photonic system for instantaneous frequency measurement (IFM) of wideband microwave signals with a tunable measurement range and resolution based on a polarization-maintaining fiber Bragg grating (PM-FBG). Firstly, in order to be insensitive to laser power fluctuation, we aim at generating two different frequency to amplitude characteristics so that we can normalize them to obtain an amplitude comparison function (ACF). Then we encode these two different wavelengths in two perpendicular polarizations by using the PM-FBG which shows different transmission profiles at two polarizations. The ACF is capable of being adjusted by tuning polarization angle, therefore the measurement range and resolution are tunable. By theoretical analyses and simulated verification, a frequency measurement range of 0~17.2 GHz with average resolution of ±0.12 GHz can be achieved, which signifies a wide measurement range with relatively high resolution. Our system does not require large optical bandwidth for the components because the wavelength spacing can be small, making the system affordable, stable, and reliable with more consistent characteristics due to the narrowband nature of the optical parts. PM-FBG with high integration can be potentially used for more polarization manipulating systems and the use of a single-polarization dual-wavelength laser can simplify the architecture and enhance the stability.

Highlights

  • Instantaneous frequency measurement (IFM) of microwave signals is extensively used in the field of electronic warfare and wireless commutations

  • The schematic setup of the proposed IFM system with tunable measurement range and resolution is shown in (Fig 1A). It consists of a single-polarization dual-wavelength laser, two polarization controllers (PCs), a polarization modulator (PolM), a polarization-maintaining fiber Bragg grating (PM-FBG), a section of single mode fiber (SMF), a wavelength division multiplexer (WDM), two photodetectors (PDs) and a processing unit

  • We have proposed a photonic wideband IFM system with tunable measurement range and resolution based on a PM-FBG

Read more

Summary

Introduction

Instantaneous frequency measurement (IFM) of microwave signals is extensively used in the field of electronic warfare and wireless commutations. With the growing requirements of large bandwidth and applications in the complex electro-magnetic environment, conventional electrical IFM technology is practically limited due to the electronic bottleneck. Photonic technology is proposed and applied to achieve wideband IFM by virtue of its distinct advantages, such as high bandwidth, low power loss and immunity to electro-magnetic interference. Many approaches have been proposed to implement photonic wideband IFM. According to the mapping modes, the IFM system can be achieved by frequency-to-space mapping [1, 2], frequency-to-time mapping [3] and frequency-to-amplitude mapping.

Methods
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.