Abstract

An implementation of the topological cluster-state quantum computer is suggested, in which the basic elements are linear optics, measurements, and a two-dimensional array of quantum dots. This overcomes the need for nonlinear devices to create a lattice of entangled photons. Whereas the thresholds found for computational errors are quite satisfactory (above ${10}^{\ensuremath{-}3}$), the estimates of the minimum efficiencies needed for the detectors and quantum dots are beyond current technology's reach. This is because we rely heavily on probabilistic entangling gates, which introduces loss into the scheme irrespective of detector and quantum-dot efficiencies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call